
Hardware image filtering on desktop computers

Janek Press
Institute of Computer Science, Faculty of Mathematics and Information Science

University of Tartu, Tartu, Estonia
press@ut.ee

Abstract
Real-time video processing, large scale image manipulation and
many other fields require much processing time. Severity of this
problem can be abated in different ways. One solution is to use
what is already present in a desktop personal computer as general
purpose graphics hardware gets more programmable.
This presentation gives an overview of author’s experiences and
work in this field. Test results are promising: hardware filters are
up to 32 times faster in perfect conditions and at least 3 times
faster in common test. The following filters are tested: Gaussian
and other smoothing techniques, sharpen, Roberts, Sobel, Prewitt,
median, morphological corner extractor.
Keywords: hardware, image filters.

1. INTRODUCTION

Real-time and large scale image processing at high rates is
computationally expensive. There are several approaches to gain
speed: optimize code, use dedicated hardware, and revaluate
methods used and goals to achieve.
As more powerful and programmable graphics hardware becomes
available to mainstream consumer new approaches are applicable.
On the other hand this process is accelerating and because of that
some methods easy to accomplish using latest hardware can be at
least partially approximated using already widely available
devices. To explore the possibilities filters are developed and their
usability tested.
First section of this paper gives some hints implementing spatial
domain image filters in limited hardware support environment.
Second section describes a test system developed by the author
for estimating speed gains resulting from moving calculations
from CPU to GPU.
The reader is expected to have basic knowledge of shading
languages. If not marked otherwise all calculations in hardware
are performed between vectors. All 4 components are 12 bit fixed
point real numbers with values ranging from -1 to 1 for signed
and from 0 to 1 for unsigned format.

2. IMPLEMENTING FILTERS

In this paragraph a short introduction to writing filters for limited
hardware is given.

2.1 Roberts
Common way to calculate any gradient filter is to assume |a-b| ≈
√(a2+b2). As this is equal to

()() ()()()baba −+++−−

where a and b are unsigned and “-“ is operator for unsigned
invert. The proof of correctness is given by the author [6]. It is
possible to calculate this NV10 class hardware. Register
Combiner program implementing this is given on Figure 1,
assuming that tex0 is a and tex1 is b.

 !!RC1.0
 {
 rgb
 {
 discard = unsigned(tex0);
 discard = unsigned_invert(tex1);
 spare0 = sum();
 }
 }
 {
 rgb
 {
 discard = unsigned_invert(tex0);
 discard = unsigned(tex1);
 spare1 = sum();
 }
 }
 out.rgb = unsigned_invert(spare0)+
 unsigned_invert(spare1);
 out.a = unsigned_invert(zero);

Figure 1: Absolute difference between tex0 and tex1.

For example using multiple passes and linear texture filtering
NV10 architecture hardware requires 4 passes to implement Sobel
filter but NV20 can do the same with 2 passes. Using NV30 just
one pass is required.

2.2 Morphology
Morphological feature extractors in common [8] are multipass
techniques. Such a filter needs to calculate two sums of some
samples one of which should be zero and other should be one to
pass the test. This can easily be achieved using PixelShader 1.4
and later versions but implementing this in version 1.1 is not
straight forward.
If a test passes the output has one value (c0), otherwise another
(c1). It is noticeable that actual minimal difference of importance
in color values m (0.012) is much higher than the theoretical value
(1/256 = 0.004) according to test on a GeForce3. Pixel Shader for
this is on Figure 2.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

 ps_1_1
 def c2, 0, 0, 0, 0
 def c3, 0.488, 0.488, 0.488, 0.488
 def c4, 1, 1, 1, 1
 def c5, 0.162, 0.285, 0.067, 0

 tex t0
 tex t1
 tex t2
 tex t3

 add_d2 r0, t0, t1
 dp3 r0, r0, c5
 cnd r1, r0.a, c3, c2

 add_x4 r0, t2, t3
 dp3_x4 r0, r0, c4
 cnd r0, r0.a, c2, c3

 add r0, r0, r1
 cnd r0, r0.a, c0, c1

Figure 2: A Morphology pixel shader with 12 instructions. c5 is
half of RGB to intensity factor's components plus m and 0.01 to

compensate for loss of precision.

The result of such a test does not change if the sum of samples
with mask 0 is subtracted from the sum of samples with mask 1
and just one conditional test is done. Updated program is given on
Figure 3.

 ps_1_1
 def c2, 1, 1, 1, 1
 def c3, 0.162, 0.285, 0.067, 0

 tex t0
 tex t1
 tex t2
 tex t3

 add_d2 r0, t0, t1
 dp3 r0, r0, c3

 add_x4 r1, t2, t3
 dp3_x4 r1, r1, c2

 add r0, r0, -r1
 cnd r0, r0.a, c0, c1

Figure 3: Morphology pixel shader with 10 instructions.

2.3 Gaussian blur
As Gaussian filter is separable, so it can be achieved using a
multipass approach: two passes using blend for two perpendicular
directions.

For example having 4 texture units acceptable results can be
achieved for standard deviation of 3. Already at this level, a
compensation for loss of brightness must be added: sum of weight
of samples not taken into account (farther than 4 texels)
distributed to sampled texels.
But as hardware supporting 4 texture units is limited to 12 bit
precision, larger standard deviation values would result texel
weights less than m.
Examples using DirectX 9 class hardware are available by I.
Takashi [3] and Frank Jargstorff [2].

2.4 Median filters
In DirectX 8 class even a 3 sample full color median filter can't be
implemented correctly. Using PixelShader 2.0 only a 4 sample
median filter can be implemented because the instruction count
limit.
A 5 sample OpenGL fragment program is implemented by I.
Takashi [4].

3. TEST SYSTEM

To compare speed and quality of different filters an extendable
test suit was created by the author [6]. The second version of this
software is available for free download as part of author’s
bachelor theses project [5]. The package contains besides the
testing system all filters mentioned above as well some more.
Also a sample framework for writing libraries is included.
The system consists of three parts:

• Frontend – convenient environment to control, test and
compare filters.

• Filters – libraries implementing image filters: software,
DirectX, OpenGL.

• Inputs – libraries for obtaining images to process.
Besides JPEG, BMP and TGA formats AVI files and
live video capturing is supported.

3.1 Writing filters
Basic filters to be tested can be hardcoded into filter libraries or
be read from external files. For DirectX the effect file format
(*.fx) is used, for OpenGL filters a simple script language was
considered to be more appropriate (*.flt) as ARB fragment
programs are not supported NV20 hardware.
Available data to a filter:

• one texture
o tex0 to tex7 (OpenGL)
o InputTexture (DirectX)

• one set of texture coordinates

• texelSize (4 componetnt vector):
o texel width
o texel height
o half of texel width
o half of texel height

• factor (4 componetnt vector, free usage)

• (OpenGL only) ModelViewMatrix

• (DirectX only) PSn and VPm pixel shader and vertex
shader external reference (n and m are natural numbers)

For general efficiency [1] as for interesting techniques [7] two
rules are common: keep it short and what could be done in a
vertex shader must not be done in a pixel shader.

3.2 Combining filters
Filter libraries use special script file format to combine basic
filters whit each other. These script files have same structure but
different extensions because the source filters to be combined are
designed either for DirectX or OpenGL (*.flX *.flG respectively).

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

3.2.1 File structure
File begins with an optional name of filter. Next one ore more
lines are source source definitions in the following form:

<id>=<source file>

After that comes definition of the filter at one line. For the syntax
of this expression refer to Figure 4. Lines beginning with “#” are
comments.

<filter> -> <ident>
<filter> -> <op>(<param>,<param>)
<op> -> x
<op> -> *
<op> -> +
<op> -> ^
<param> -> <op>
<param> -> <id>
<param> -> <id>{r}
<param> -> <id>{r,r,r,r}

Figure 4: Set of productions defining syntax of filters definitions.
r is a real number between 0 and 1 in it's decimal presentation.

3.2.2 Operators
Following binary operations are supported:

• Composition “x” - result of right filter is passed for
input to left filter.

• Multiplication “*” - results of two filters are
multiplied.

• Addition “+” - results of two filters are added.

• Rise to power “^” - shorthand to write several
multiplications in compact form. Takes an integer for
the right parameter.

3.2.3 Example filter
For illustration consider following problem: replace pixels in
source image if these classify as corners in morphological filter of
different types.
Assume we have identity filter, classification filter that outputs
one, if source texel is less bright than a constant, and
morphological corner extractor based on ideas of Section 2.2. To
compute desired effect one applies the morphological filter which
paints all corners in different colors and classifies these as texels
to be replaced in the original image. Now, according to this
classification texels are added to output image so that colors of
corner texels are replaced according to classification: red is upper
left, white is upper right, green is bottom left and blue is bottom
right. Script for this composition is on Figure 5.

Added morph

morph=DX8_morphology.fx
i=DX_identity.fx
cln=DX8_classify_neg.fx

+(morph,*(i,x(cln{1,1,1,0.1},morph)))

Figure 5: Composite filter adding results of morphological tests
to original image.

3.3 Test results
For basic testing a system with 1.4GHz processor and a GeForce
3 graphics board was used. Advanced filters were tested on
machine with a 2.8GHz Pentium 4 and GeForceFX 5950 Ultra.
Using Radeon 8xxxx and 9xxx series cards lead to a performance
drop at huge inputs.

3.3.1 Video capturing
Standard webcam delivers about 6 frames per second with a
resolution of 320x240. These frames were passed to edge
extracting filters in real-time and the CPU usage was observed.
Applying hardware identity filter compared to a software filter
raised the CPU load about 15%. This is because of the time
needed to transfer the data to and from the GPU.
Using Roberts filter gives a slight advantage but not more than
5% compared to a software filter.
Sobel filter consumed all available CPU time in software mode
but did not arise the load noticeable compared to level of applying
hardware Roberts filter.
There was no practical advantage using GPU based filters for the
simplest cases but already Sobel filter in hardware reduced the
CPU load approximately 3 times.

3.3.2 Static images
As mentioned before transfer times to and from the graphics
hardware must be taken into account. To illustrate this image of
size 512x512 was used. As it was the case with video processing
using hardware implementation for Roberts filter lead to a loss of
performance (25%) and Sobel filters had opposite results (2.5
times faster). For larger scale images (1024x1024) the hardware
assisted version of Roberts filter performs better giving positive
results and Sobel filter extends its lead reducing to CPU load
about 4 times.

3.3.3 Pure tests
To estimate full potential of more complex hardware filters the
system provides a mechanism to disable input and output for each
time a filter is executed. Instead of this the data is transferred only
at the beginning and at the end of a testing session. This is
meaningful because during execution of complex filters the data
does not leave the video memory.
Using this approach this particular GPU outperforms the CPU at
least 32 times.

4. CONCLUSION

GPUs get every year more programmable gaining new
functionality and speed. To have the greatest benefit through
knowing your limits these must be thoroughly explored.
First of all some filters of interest can be effectively implemented
already using DirectX 8 class hardware and practical advantage is
noticeable. Secondly most of them are multipass. Last but not
least after working for several hours on a filter just one instruction
too much from making it work you become aware where the limit
is so one should not forget about the hardware already widespread
and techniques used in the past.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

5. REFERENCES

[1] A. Rege, C. Brewer. Practical performance analysis and
tuning.
[2] F. Jargstorff. Gpu image processing: The cg_scotopic demo.
[3] I. Takashi. Gaussian filter.
[4] I. Takashi. Median filter.
[5] J. Press Hardware image filtering (bachelor thesis).
[6] J. Press. Hardware image filtering (semester work).
[7] M. M. Wloka. Gpu-assisted assisted rendering techniques.
[8] R Fisher, S. Perkins, A. Walker, E. Wolfart. Hipr2.

About the author

Janek Press is graduate student at University of Tartu, Faculty of
Mathematics and Information Science His contact email is
press@ut.ee.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

http://developer.nvidia.com/object/gdc_2004_presentations.html
http://developer.nvidia.com/object/gdc_2004_presentations.html
http://developer.nvidia.com/object/nvsdk_home.html
http://if.dynsite.net/t-pot/program/79_Gauss
http://if.dynsite.net/t-pot/program/69_medianfilter
http://www.ut.ee/?press/dl/filter2s.zip
http://www.ut.ee/?press/dl/filters.zip
http://developer.nvidia.com/object/gdc_2004_presentations.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
mailto:press@ut.ee

	INTRODUCTION
	IMPLEMENTING FILTERS
	Roberts
	Morphology
	Gaussian blur
	Median filters

	TEST SYSTEM
	Writing filters
	Combining filters
	File structure
	Operators
	Example filter

	Test results
	Video capturing
	Static images
	Pure tests

	CONCLUSION
	REFERENCES

